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VWhat Is source apportionment in
atmospheric sciences?

With source apportionment analysis we will

know:

 Where does this pollution come from?

* How much of it comes from traffic,
industry, agriculture, natural sources, etc.?

-

Source apportionment is critically important *
in atmospheric sciences because it helps
identify and gquantify the contributions of
different emission (pollution) sources to air
quality.




Why Is Important the source

gportionment in atmospheric sciences?

1. Effective Air Quality Management
Understanding the sources of pollutants
vehicles, industry, agriculture, wildfires) allows
policymakers to target the most significant
contributors with regulations or interventions.

2. Public Health Protection
Different pollution sources can have varying health
impacts. For example, fine particles from diesel
exhaust may be more harmful than those from
natural dust. Apportionment helps prioritize actions
to reduce the most toxic sources.

3. Model Validation and Improvement
Chemical transport and air quality models rely on
assumptions about emissions. Source
apportionment studies provide real-world data to
validate and refine these models.




Why Is Important the source

apportionment in atmospheric sciences?

4. Climate Change Implications
Some pollutants affect both air quality and climate
(e.g., black carbon, ozone). Source apportionment
informs strategies that co-benefit climate and air
quality goals.

5. Global Pollution
Air pollution doesn’t have borders. Apportionment
can distinguish between local and long-range
transported pollution, guiding diplomatic or
regional cooperation.
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WHAT IS THE POSITIVE MATRIX
FACTORIZATION (PMF) MODEL?

The PMF Model can analyze a wide range of |
environmental sample data: sediments, wet deposition,
surface water, and ambient air.

EPA’'s PMF Model reduces the large number of variables
in complex analytical data sets to combinations of
species called source types and source contributions.

The source types are identified by comparing them to
measured profiles. Source contributions are used to
determine how much each source contributed to a
sample. In addition, PMF provides robust uncertainty
estimates and diagnostics.
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https://www.epa.gov/air-research/positive-matrix-
factorization-model-environmental-data-analyses

=™

-


https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses

What is the Positive Matrix Factorization (PMF) Model?

*PMF is a receptor model that analyzes measured concentrations of pollutants (e.g., PM,.5 chemical
components) at a given location.

o[t statistically decomposes this data into a set of source profiles and contributions over time—without
requiring prior knowledge of the sources.

How it works:
*The observed concentration matrix X is approximated by multiplying two matrices:

X=G'F+E

* G = Contributions of each source to each sample (time series)
* F = Chemical profiles of sources (what each source emits)
* E = Residual (unexplained part)

Cons:

*Requires expertise to interpret results
*Sometimes sensitive to missing or noisy data



OW DOES THE MODEL WORK?

Input' A_| B C D E F G H | ] K L M N
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HOW DOES THE MODEL WORK?
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Algorithms used in the PMF
Model have been peer
reviewed by leading air and
water quality management
scientists.
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What are the tracers?

In environmental science, tracers or markers are
substances or indicators used to track the movement,
origin, or fate in natural systems such as water, in
atmosphere, or in a biological organism.

Typical characteristic of a tracer:

The tracer, must be emitted exclusively or predominantly by
specific sources, giving those sources a relatively unique
chemical signature.

The tracer compound should be chemically stable in the
atmosphere, reacting slowly enough to remain unchanged
from the point of emission to the receptor site.

Ideally, a tracer should not be formed through atmospheric
reactions, nor should it volatilize during transport, in order to
ensure that mass balance is maintained.



Key tracers in atmospheric sciences

Natural Sources

Levoglucosan, nss-K*

Al, Si, nss-Ca ?* CL, ss-Na* oH
2+
nss-Ca?" = Total Ca’" — ((li; - )Sea . X Na;mple O O )., OH
OH

nss: non-sea salt [nss-Ca2+]=[Ca2*]- 0.0383 x [Na*] [nss—-K*]=[K*] - 0.0371 x [Na*]



Key tracers in atmospheric sciences

Natural Sources image Credit: Kateryna

Kon/Shutterstock com

shutterstock.com + 1176005269

Sucrose Mannitol Cholesterol
s up OH OH
© o /A\V/J\T/»\\/
OH HO
HO O OH OH

OH OH OH



Key tracers in atmospheric sciences
Anthropogenic Sources

SO .2-
V and Ni nss-S0,%, NO,, Pb,cd, cr ~ 1$5-50,%, Pb, Cd, Cr; Zn
Emissions from marine Cu, Fe — brake/tires
fuel combustion

[nss=SO, 4] =[SO, *],oa1 — 0.2517 x [Na*]



Other Key tracers in atmospheric sciences

Organics markers (#) Origins
MSA Marine SOA
Levoglucosan Primary biomass burning
1-Nitropyrene (1-NP) Diesel emission
6H-Dibenzo[b,d]pyran-6-one SOA PAH
Benzo[a]fluorenone SOA/POA PAH
Benzo[b]fluorenone SOA/POA PAH
9-Nitroanthracene SOA/POA PAH
2-Nitrofluoranthene SOA PAH
DHOPA SOA Toluene
4-Methyl-5-nitrocatechol SOA Phenolic compounds
3-Methyl-5-nitrocatechol SOA Phenolic compounds
2-Methylerythritol SOA Isoprene
a-Methylglyceric acid SOA Isoprene

Credit to Prof. Hopke



PMF applications in
atmospheric sciences

EXAMPLES



EXAMPLE-1

Identifying the sources of atmospheric organic Phosphorus

NPJ | climate and atmospheric science

Explore content ¥  About the journal v  Publish with us Vv

nature > npj_climate and atmospheric science > articles > article

Article | Open access | Published: 03 December 2021

Bioaerosols and dust are the dominant sources of
organic P in atmospheric particles

Kalliopi Violaki E, Athanasios Nenes, Maria Tsagkaraki, Marco Paglione, Stéphanie Jacquet, Richard

Sempéré & Christos Panagiotopoulos




Why is important the study of P for Mediterranean sea

* [t is known that East MS in P limited, while the
atmosphere considered as an important nutrient

] ) ] ] [mg/m++3] {Mar2005)
path for the pelagic marine organisms, especially

= N

Aqua Chlorophyll a coancentration

during stratification period (usually from May- = S
September). g T W
 Decode the chemical structure of the P fraction L7 Sl :

could reveal valuable information regarding their

bioavailability in the marine environment.

 Understanding better the atmospheric chemistry
of P compounds and beyond the biochemical
cycle of P.

18



Scenario B

26%

17%

92% —

4.6%

Total global P: 3.5 TgPy!

Wang et al., 2015

The global P sources
according to modeling
assessment

Average dust deposition (g/m?/year)

0.00 020 050 1.0 200 500 10 20 50

* Mediterranean seams to follow the
scenario A due to proximity to Sahara
desert.

« Scenario B could be a future scenario or
a more regional scenario in areas with
high frequency of BB events.

* Is missing the source distribution in org-
P and inorg-P, which could explain
different processes in P cycle.

Scenario A

84%

12%

2%

2%

0.4%

0.4%

Total global P: 1.37 TgPy!
19

Mahowald et al., 2008, Myriokefalitakis et al., 2016



EXAMPLE-1

Identifying the sources of atmospheric organic Phosphorus

Supplementary Table 8: Characteristic tracers for the identification of the PMF factors.

Identified factors Specific tracers References

Cells & Pollen PCs, PEs, sucrose Womiloju et al. 20032, Fu et al., 2012°

Fungi Mannitol Fuet al., 20123

Sahara dust Aluminium, nss-Ca>" Belis et al., 2019*

Anthropogenic Nitrate, Pb, V Belis et al., 2019*

Secondary sulfate Nss-SO,>, NH,* Manousakas et al., 2017°

Biomass burning nss-K*, Levoglucosan Belis et al., 2019*

Sea-salts Cl', Mg** Belisjet al., 2019* Manousakas et al.,
2017

Factors in PMF= Source profile



Sources suggested by PMF 5.0
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Sources of organic P

m fungi  meukaryotic cells & pollen

Sea salts Anthropogenic 60
4%
| 17% 50
Secondary —
Cells & Sulfate c 40
0)
Pollen 4% g 30
41% =
@ 20
S
o 10
ust
24% e —
Fung S T S A O PP
10% F 7 T S

 Bioaerosols contribute with 51% to total org-P sources.

« They present seasonality, dominating during spring and summer (stratification period).

 Dust contribute with 24% to total org-P sources.

« The anthropogenic emissions are also important contributor to organic P fraction with
~17% and secondary produced due to acid solubilization is 4%. Global models suggest
that 10% of atmospheric org-P is emitted from human activities (Kanakidou et al., 202}2).



Sources of inorganic P

Sea salts Secondary
Biomass ) Fungi 6% Sulfate
Cells & burning Anthropogenic 14% 5%
12%
Pollen 3%
19% Secondary
Sulfate
15%
Fungi
9%
Dust
0) .
Phosphate (PO,*) 42% Condensed inorg-P (CP) Dust
5%

 Dust is the dominant source of both phosphate & CP.

» They present seasonality, dominating during spring and autumn.
« Anthropogenic emission produced more soluble P contributing primary with 12% and

secondary with 15%. This estimation is similar with the proposed global percentage of
14.3% by Mahowald et al. (2008).

25



EXAMPLE-1

a. b.
= anthropogenic = biomass-burning sathtopegenic
w secondary sulfate = fungi 5% biomass-burning
dust u cells & pollen 1%

B marine
marine
21%

secondary sulfate
17%
cells & pollen _
11%

mass (ng m?)

dust
36%

fungi
9%

Supplementary Figure 6: Relative contributions to the particulate mass of the seven sources identified
by PMF: contributions are shown with their variability in time (a) and expressed as average of the
whole measurement period (b).



EXAMPLE-1

Sea salts_ Biomass burning Anthropogenic

3% 11%

Cells & Pollen,
23%
Secondary
Sulfate
9%

Fungi
l(l“ O

Dust, 43%

Supplementary Figure 8: Contribution percentage of the different atmospheric sources to total P
(TP) over the Eastern Mediterranean area during a one-year period (2016-2017) for total suspended
particles. TP was calculated to be 21.5 Gg P year



Article ‘ Open access | Published: 03 December 2021

Bioaerosols and dust are the dominant sources of
organic P in atmospheric particles

Kalliopi Violaki E, Athanasios Nenes, Maria Tsagkaraki, Marco Paglione, Stéphanie Jacquet, Rich

Sempéré & Christos Panagiotopoulos

Estimation of the annual deposition
fluxes (in Gg P year-1) of phosphorus
| species and their distribution to
et ‘ ) different sources over the eastern
P Y, Mediterranean during one-year

S ﬁ.// period (2016-2017) for total
W Jﬂ/,/k\ suspended particles. Total P was

E' ‘a‘ = - \/ calculated to be 21.5 Gg P year™1.
= % e

:-

gs 3
= —

g = b
-

g? g

177) 7 5]

Biomass
burning



Scenario B P sources over East Med.

43%
17%
34%
92% — 19%
1%
4.6%
3%

Total global P: 3.5 Tg P y! Total P: 21.5 Gg P y!

Wang et al., 2015 Violaki et al., 2021

Scenario A

2%
2%
0.4%

0.4%

Total global P: 1.37 TgPy!
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Mahowald et al., 2008, Myriokefalitakis et al., 2016



N XAMPLE-ZEEEEE

ATMOSPHERIC ENVIRONMENT: X 14 (2022) 100165

Contents lists available at ScienceDirect

ATMOSPHERIC
ENVIRONMENT: @

. Trsmtormatians

. Chimage

Atmospheric Environment: X

journal homepage: www.journals.elsevier.com/atmospheric-environment-x

Check for

Source identification of the elemental fraction of particulate matter using e
size segregated, highly time-resolved data and an optimized source
apportionment approach

M. Manousakas ™ , M. Furger°, K.R. Daellenbach?, F. Canonaco”, G. Chen®, A. Tobler*",
P. Rai®, L. Qi", A.H. Tremper °, D. Green %4 C. Hueglin®, J.G. Slowik?, I. El Haddad®, A.S.
H. Prevot™

& Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232, Villigen, PSI, Switzerland

b Datalystica Ltd., Park InnovAARE, 5234, Villigen, Switzerland

¢ MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK

4 NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK

® Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Uberlandstrasse 129, 8600,
Diibendorf, Switzerland



EXAMPLE-2

Background of the study

This study aimed to:

* Identify the sources of PM elements
in Ziurich, Switzerland, using size-
segregated elemental composition
data.

 PMF analysis was performed using
a combined dataset of PM,: and
PMcoarse (PM;,_, ).

 The high-time resolution of the
elemental data coupled with the Fi. 1. The sampling point and centrl i saion (sigh)in Zivic, Switzerlan ()
size-segregated information led to
improved Source Apportionment
results in this urban environment.

50km



Instruments

Q-ACSM - CI, NH,*, NO3-, SO,%7, Organic Aerosols (0OA)
 AE33 aethalometer - Black Carbon

« Total carbon analyzer (TCA08) - Total Carbon

e Xact 6251 ambient metals monitor >

PM, . and PM,, concentrations of 37 elements (Al Sj, P, S,
CL K, Ca, Sc, Ty, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br,
Rb, S1, Y, Zr, Nb, Cd, In, Sn, Sb, |, Ba, Hg, T1, Pb, Bi)

Xact 625i ambient metals monitor

Total carbon analyzer
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Median diurnal variation of the source contributions in ng m=3
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railway fireworks seasalt  piomass
7% 6% burning
7%

HDV constr:lctlon
17% a%
industrial

3%
LDV
5%
Pb
1%

sulfates
15%

Zn 1%

transportec
dust dust
22%

Contents lists available at ScienceDirect

ATMOSPHERIC

Atmospheric Environment: X

Manousakas et al., 2022

s TORLEES
ELSEVIER journal homepage: www.journals.elsevier.com/atmospheric-environment-x



EXAMPLE-3

Atmos. Chem. Phys., 24, 1193-1212, 2024 Atmospheric ¢
https://doi.org/10.5194/acp-24-1193-2024 : =
© Author(s) 2024. This work is distributed under Chemls-try § EG U
the Creative Commons Attribution 4.0 License. and Physics ¢

Source apportionment of PM, 5 in Montréal, Canada, and
health risk assessment for potentially toxic elements
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Figure 1. The temporal variation of PM» 5 concentrations for the sampling period (13 August to 11 November 2020).

Sampling was conducted at an urban site in Montréal from 13 August to 11 November 2020. The sampling
site, labeled as MTL, was located on the rooftop of campus MIL (12 m above ground level) at the University

of Montréal (45°3102100 N, 7323701400 W) in the neighborhood of Outremont. The site is characterized

by a high density of residential and commercial premises.



Average concentrations (ng m-3) of organic compounds in PM, .

Mean SD  Range
17a(H)-218(H)-Hopane 0.18 0.01  0.06-0.70
n-Alkanes
Tetradecane (C14) 0.58 0.31 0.20-1.73
Pentadecane (C15) 0.48 0.66 0.28-4.27
Hexadecane (C16) 0.75 0.37 0.34-2.04
Heptadecane (C17) 0.71 0.67 0.22-5.20
Octadecane (C18) 0.99 1.69 0.18-8.29
Nonadecane (C19) 0.46 0.24 0.17-1.26
Eicosane (C20) 1.82 1.20  0.73-7.90
Heneicosane (C21) 0.99 0.35 0.37-2.14
Docosane (C22) 0.96 1.15 0.37-8.49
Tricosane (C23) 1.02 042 0.40-2.16
Tetracosane (C24) 2.24 1.61 0.82-11.16
Pentacosane (C25) 1.97 1.02  0.83-4.97
Hexacosane (C26) 1.51 0.84 0.48-3.96
Heptacosane (C27) 2.52 2.89  0.74-23.82
Octacosane (C28) 1.79 2.84 0.45-23.20
Nonacosane (C29) 3.84 378 0.73-3.37
Triacontane (C30) 1.12 1.41  0.12-7.07
Hentriacontane (C31) 1.56 0.96 0.34-6.72

Sugars

Levoglucosan 33.72 6.45 6.45-126.40
Mannosan 1.03 094 0.154.59
Mannitol 2.14 3.22  0.23-18.91
Arabitol 3.14 4.29  0.29-39.00
Glucose 2.92 3.01 0.17-24.47
Fatty acids

Tetradecanoic acid 4.17 1.40 1.66-7.97
Hexadecanoic acid 51.12  13.09 28.39-87-43
Octadecanoic acid 37.06 041 18.05-64.90
Oleic acid 4.43 1.65 2.51-13.05
Dicarboxylic acids (DCAs)

Oxalic acid (diC2) 7.79 1.58 0.28-15.03
Adipic acid(diC6) 1.60 4.18 0.31-3.42
Azelaic acid (diC9) 593 2.18 1.12-15.01
Biogenic SOA tracers

Pinic acid 4.73 1.78 0.21-8.93
cis-Pinonic acid 3.17 1.71  0.62-9.73
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ARCTIC HAZE
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Lead Smelting
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Questions?

e-mail: kalliopi.violaki@epfl.ch



